“Deepfake” as a tool for manipulating and disseminating “fakenews” in video format on social networks
DOI:
https://doi.org/10.5195/biblios.2020.864Keywords:
Deepfake, Fakenews, Image manipulationAbstract
Objective. The research to proceed has as objective analyzes the new contents of spread of false information, like this looking for to consider what would be the “deepfake” and the “fakenews” and the consequences of those image manipulations and veiculação of you announce.
Method. To develop an exploratory research with bibliographic survey of published materials, such as articles from scientific journals, in which a literature review was carried out in an easy way to clarify and present the subject of deepfakes still little known, and also presented that The way it is created, it manipulates a point of unbridled maneuver in front of social networks.
Results. It is known that today the software and applications for smatphones provide, very skillfully, that users manipulate images with extreme ease, the so-called fakeApp, which are tools that allow alteration and manipulation of images in a way that do not leave visual clues of their alteration, and may be indistinguishable from authentic ones. An example of the result of these manipulations is the “deepfake”, is the technique that replaces the face of one person by another in a video, in the current panorama it is common to visualize fake videos, which generate fakenews, or fake news, widely disseminated on social networks and that fit for gaining some credibility due to the difficulty of distinguishing the veracity in the image shown there, as much as the adulteration marks are imperceptible. What facilitates the production of “fakenews” is that any user with limited programming knowledge and little technological learning can create “deepfakes,” and this type of production has triggered challenges for legal professionals, who still find a significant difference between “deepfakes” and authentic videos.
References
Afchar, D., Nozick, V., & Yamagishi, J. (2018). MesoNet: A compact facial video forgery detection network. arXiv:1809.00888v1 [cs.CV] 4 Sep 2018. Recuperado de https://arxiv.org/abs/1809.00888.
Bunk, J. , Bappy, J. , Mohammed, T. , Nataraj, L. , Flenner, A. , Manjunath, B. , Chandrasekaran,S., … Peterson, L. (2017). Detection and localization of image forgeries using resampling features and deep learning. arXiv:1707.00433v1 [cs.CV] 3 Jul 2017. Recuperado de https://arxiv.org/abs/1707.00433
Floridi, F. (2018). Artificial Intelligence, Deepfakes and a Future of Ectype. Springer Netherlands. 31, 317-321. doi:10.1007/s13347-018-0325-3.
Genesini, S. (2018). A pós-verdade é uma notícia falsa. Revista USP. São Paulo:116, 45-58.
Güera, D., Delp, E. J. (2018). Deepfake video detection using recurrent neural networks. In IEEE International Conference on Advanced Video and Signal-based Surveillance (to appear). Doi: 10.1109 / AVSS.2018.8639163
Hasan, H. R., Salah, K., (2019). Combating Deepfake Videos Using Blockchain and Smart Contracts. in IEEE Access. 7, 41596-41606. doi: 10.1109/ACCESS.2019.2905689.
Joseph, R. (2019). Fakebusters strike back: How to spot deep fakes, the manipulated videos that are the newest form of “fake news” to hit the internet. Index on Censorship, 48(1), 76–79. doi: https://doi.org/10.1177/0306422019841326
Koopman, M., Rodriguez, A. M., & Geradts, Z. (2018). Detection of Deepfake Video Manipulation.In: Conference: IMVIP, At Belfast. August 2018. Recuperado de https://www.researchgate.net/publication/329814168_Detection_of_Deepfake_Video_Manipulation
Korshunov, P., Marcel, S. (2018). DeepFakes: A new threat to face recognition? assessment and detection. arXiv:1812.08685v1 [cs.CV] 20 Dec 2018. Recuperado de http://publications.idiap.ch/downloads/reports/2018/Korshunov_Idiap-RR-18-2018.pdf
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature. 521,436-444. doi: 10.1038/nature14539.
Li, Y., Lyu, S. (2018). Exposing deepfake videos by detecting face warping artifacts. arXiv:1811.00656v1 [cs.CV]. Recuperado de https://arxiv.org/abs/1811.00656
Maras, M.-H., & Alexandrou, A. (2018). Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos. The International Journal of Evidence & Proof, 23(3), 255–262. doi: https://doi.org/10.1177/1365712718807226
Miyoung, C., & Youngsook, J. (2016) Face recognition performance comparison between fake faces and live faces. Soft Computing 21(12), 3429-3437. Recuperado de https://link.springer.com/content/pdf/10.1007%2Fs00500-015-2019-4.pdf
Ngiam, J., Khosla, A., Mingyu, K., Juhan, N., Honglak, L., Ng, A.Y. (2011). Multimodal Deep Learning. Proceedings of the 28th International Conference on Machine Learning, ICML 2011. 689-696. Recuperado de https://www.researchgate.net/publication/221345149_Multimodal_Deep_Learning
Popescu, A. C, Farid, H. (2005). Exposing digital forgeries by detecting traces of resampling. in IEEE Transactions on Signal Processing. 53(2),758-767. doi: 10.1109/TSP.2004.839932
Sabir, E., Cheng, J., Jaiswal, A., AbdAlmageed, W., Masi, I., and Natarajan, P. (2019). Recurrent convolutional strategies for face manipulation detection in videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 80-87. Recuperado de https://arxiv.org/abs/1905.00582
Sullivan, B. (2019). Charniak, E. An Introduction to Deep Learning. Perception, 48(8), 759–761. doi: https://doi.org/10.1177/0301006619857273
Tan, X., Li, Y., Liu, J., & Jiang, L. (2010). Face liveness detection from a single image with sparse low rank bilinear discriminative model, Computer Vision ECCV 2010. Springer, Berlin Heidelberg.
Xin, Y., Yuezun, L. & Siwei, L. (2018).Exposing Deep Fakes Using Inconsistent Head Poses. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019. 8261-8265. doi: 10.1109/ICASSP.2019.8683164.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.