Creation, evaluation, and implementation of the application for Higher Education MoILCaps
a useful tool for mobile teaching and information literacy
DOI:
https://doi.org/10.5195/biblios.2023.1015Keywords:
ACRL framework, ADDIE model, Higher education, Information literacy, Microlearning, Mobile application, Mobile learning, Mobile teaching, MoILCaps app, University libraryAbstract
Objective. To create, evaluate, and implement the effectiveness of the MoILCaps application in the context of higher education. Based on cognitive, constructivist, and connectivist theories, this app has been developed on a user experience-based instructional design model. It is intended for self-learning by students in the Social Sciences.
Method. With the collaboration of both faculty and students, the application was developed following the model, of Analysis, Design, Development, Implementation, and Evaluation (ADDIE). The final phase provided improvement proposals for optimizing the final version of the tool, a progressive web app with open access.
Results. The developed application is organized into six capsules following the ACRL framework (Association of College and Research Libraries) for information literacy in higher education (2015): learn, search, evaluate, create, research, and disseminate. It includes multimedia resources in the form of micro-content that highlight readability, organization, and visualization as key features. This user experience-centered app model constitutes a relevant instrument for promoting information literacy (IL teaching by faculty and libraries.
Conclusions. The different analyses, followed by improvement proposals and revisions, led to the achievement of an application of great utility for students, faculty, and the library. Libraries, along with faculty, play a crucial role as active agents in information literacy education, which must adapt to the incorporation of mobile technologies in response to the needs of current society.
References
Adrakatti, A. F., & Mulla, K. R. (2017). A realistic approach to information services on mobile apps. Journal of Access Services, 14(1), 7-15. https://doi.org/10.1080/15367967.2017.1287573
Allela, M. A., Ogange, B. O., Junaid, M. I., & Charles, P. B. (2020). Effectiveness of Multimodal Microlearning for In-service Teacher Training. Journal of Learning for Development, 7(3), 384-398. https://eric.ed.gov/?id=EJ1280612
Alnajdi, S. M. (2018). The Effectiveness of Designing and Using a Practical Interactive Lesson Based on ADDIE Model to Enhance Students' Learning Performances in University of Tabuk. Journal of Education and Learning, 7(6), 212-221. . https://doi.org/110.5539/jel.v7n6p212
Basile, A., & Matis, S. (2018). Is there an app for that? A review of mobile apps for information literacy classes. College & Research Libraries News, 79(10). https://doi.org/10.5860/crln.79.10.546
Batsaikhan, A. & Hachinger, S. (2023). A Progressive Web App Template for Citizen Science Projects Involving Spatial Data Collection. 2023 IEEE 19th International Conference on e-Science (e-Science), Limassol, Cyprus, 2023, pp. 1-6, https://doi.org/10.1109/e-Science58273.2023.10254925
Bernacki, M. L., Greene, J. A., & Crompton, H. (2020). Mobile technology, learning, and achievement: Advances in understanding and measuring the role of mobile technology in education. Contemporary Educational Psychology, 60, 101827. https://doi.org/10.1016/j.cedpsych.2019.101827
Broderick, A., Mehta-Parekh, H., & Reid, D. K. (2005). Differentiating instruction for disabled students in inclusive classrooms. Theory into practice, 44(3), 194-202. https://doi.org/10.1207/s15430421tip4403_3
Broderick, D. (2014). Collaborative design: Participatory culture meets multiliteracies in a high school literary arts community. Journal of Adolescent & Adult Literacy, 58(3), 198-208. https://www.learntechlib.org/primary/p/171873/
Brooks, C., & McCormack, M. (2020). Driving Digital Transformation in Higher Education. EDUCAUSE. https://library.educause.edu/resources/2020/6/driving-digital-transformation-in-higher-education
Budoya, C., Kissaka, M., & Mtebe, J. (2019). Instructional design enabled Agile method using ADDIE model and Feature Driven Development method. International Journal of Education and Development using ICT, 15(1), 1-14. http://ijedict.dec.uwi.edu/
Charles, L. H. (2021). Using a TeachMeet model to enhance collaboration in an information literacy instruction program. The Journal of academic librarianship, 47(5), 102393. https://doi.org/10.1016/j.acalib.2021.102393
Chen, O., Woolcott, G., & Sweller, J. (2017). Using cognitive load theory to structure computer‐based learning including MOOCs. Journal of Computer Assisted Learning, 33(4), 293-305. https://doi.org/10.1111/jcal.12188
Chen, Y. C., Fan, K. K., & Fang, K. T. (2021). Effect of flipped teaching on cognitive load level with mobile devices: the case of a graphic design course. Sustainability, 13(13), 7092. https://doi.org/10.3390/su13137092
Demir, K., & Akpinar, E. (2018). The Effect of Mobile Learning Applications on Students' Academic Achievement and Attitudes toward Mobile Learning. Malaysian Online Journal of Educational Technology, 6(2), 48-59. https://doi.org/10.3390/su13137092
Denke, J., Jarson, J., & Sinno, S. (2020). Making the Invisible Visible: Enhancing Information Literacy and Metacognition with a Constructivist Activity. International Journal for the Scholarship of Teaching and Learning, 14(2), 7. https://doi.org/10.20429/ijsotl.2020.140207
Divayana, D. G. H., Ariawan, I. P. W., Ardana, I. M., & Suyasa, P. W. A. (2021). Utilization of alkin-wp-based digital library evaluation software as evaluation tool of digital library effectiveness. Emerging Science Journal, 5(5), 731-746. http://dx.doi.org/10.28991/esj-2021-01308
Downes, S. (2005). Feature: E-learning 2.0. Elearn magazine, 1, 1- 30. https://doi.org/10.12691/education-2-2-7
Falloon, G. (2017). Mobile devices and apps as scaffolds to science learning in the primary classroom. Journal of Science Education and Technology, 26(6), 613-628. http://www.jstor.org/stable/45151242
Fedeli, L. (2017). School, curriculum and technology: the what and how of their connections. Education Sciences & Society-Open Access, 8(2), 1-12. https://doi.org 10.3280/ess2-2017oa5595
Fedyk, M., & Xu, F. (2018). The epistemology of rational constructivism. Review of Philosophy and Psychology, 9(2), 343-362. https://doi.org/10.1007/s13164-017-0372-1
Frydenberg, M., & Andone, D. (2016). Creating micro-videos to demonstrate technology learning and digital literacy. Technology learning and digital literacy, 13 (4), 261-273. https://doi.org/110.1108/ITSE-09-2016-0030
Frydenberg, M., & Lorenz, B. (2020). Lizards in the Street! Introducing Cybersecurity Awareness in a Digital Literacy Context. Information Systems Education Journal, 18(4), 33-45. https://isedj.org/; http://iscap.info
Gezgin, D. M. (2019). The effect of mobile learning approach on university students' academic success for database management systems course. International Journal of Distance Education Technologies (IJDET), 17(1), 15-30. https://doi.org/10.4018/IJDET.2019010102
Gretter, S., & Yadav, A. (2018). What do preservice teachers think about teaching media literacy? An exploratory study using the theory of planned behavior. Journal of Media Literacy Education, 10(1), 104-123. https://doi.org/10.23860/JMLE-2018-10-1-6
Gross, M., Latham, D., & Julien, H. (2018). What the framework means to me: Attitudes of academic librarians toward the ACRL framework for information literacy for higher education. Library & information science research, 40(3-4), 262-268. https://doi.org/10.1177/0961000619891762
Guedes, R., Valois, R., Costa, A., & Delineau, V. (2020). AcademicMind-The mindfulness app for academics. European Journal of Public Health, 30(Supplement_5), ckaa166-021. https://doi.org/10.1093/eurpub/ckaa166.021
Guo, J., & Huang, J. (2021). Information literacy education during the pandemic: The cases of academic libraries in Chinese top universities. The Journal of Academic Librarianship, 47(4), 102363. https://doi.org/10.1016/j.acalib.2021.102363
Guo-hua, W. U. (2019). Design and Develop of Teaching APP System for Vocational School Based on ADDIE Model. Computer & Telecommunication, 1(3), 17-19. https://doi.org/10.4000/ctd.7556
Han, T. I. (2020). A Study on the Characteristics Satisfaction in Digital Convergence based Micro-Learning. Journal of Digital Convergence, 18(6), 287-295. https://doi.org/ doi.10.26754/uz.978-84-16723-97-3
Hanbidge, A. S., Tin, T., & Sanderson, N. (2018). Information Literacy Skills on the Go: Mobile Learning Innovation. Journal of Information Literacy, 12(1).1-10. https://doi.org/10.11645/12.1.2322
Hartson, R., & Pyla, P. (2019). Agile UX design for a quality user experience (Second). Morgan Kaufmann Ed. https://doi.org/10.11645/12.1.2322
Head, A. J., Bull, A. C., & MacMillan, M. (2019). Asking the right questions: Bridging gaps between information literacy assessment approaches. Against the Grain, 31(4), 10. https://doi.org/10.7771/2380-176X.8408
Jahnke, I., Lee, Y. M., Pham, M., He, H., & Austin, L. (2020). Unpacking the inherent design principles of mobile microlearning. Technology, Knowledge and Learning, 25(3), 585-619. https://doi.org/10.1007/s10758-019-09413-w
Janssen, J., & Kirschner, P. A. (2020). Applying collaborative cognitive load theory to computer-supported collaborative learning: towards a research agenda. Educational Technology Research and Development, 1, 23-35 https://doi.org/10.1007/s11423-019-09729-5
Javorcik, T., & Polasek, R. (2019). Transformation of e-learning into microlearning: New approach to course design. In AIP Conference Proceedings (Vol. 2116, No. 1, p. 060016). AIP Publishing LLC. https://doi.org/10.1063/1.5114051
Keyes, C., Shroff, R. H., & Linger, W. (2015). Addressing Design Issues In Mobile Applications Supporting Ubiquitous Learning. Advances in Scholarship of Teaching and Learning, 3(1),1-15. https://www.semanticscholar.org/paper/Addressing-design-issues-in-mobile-applications-Keyes-Shroff/eb06713c3f7c4c528519fd4268dc5ef7761d49ee
Khalil, M. K., & Elkhider, I. A. (2016). Applying learning theories and instructional design models for effective instruction. Advances in physiology education, 40(2), 147-156.s https://doi.org/10.1152/advan.00138.2015
Lee, C. J., & Choi, S. W. (2021). A New Normal of Lifelong Education According to the Artificial Intelligence and EduTech Industry Trends and the Spread of the Untact Trend. In Software Engineering in IoT, Big Data, Cloud and Mobile Computing (pp. 191-205). Springer, Cham. Software Engineering in IoT, Big Data, Cloud and Mobile Computing 3030647722, 9783030647728
Lee, Y. M., Jahnke, I., & Austin, L. (2021). Mobile microlearning design and effects on learning efficacy and learner experience. Educational Technology Research and Development, 69(2), 885-915. https://doi.org/10.1007/s11423-020-09931-w
Li, J., Antonenko, P. D., & Wang, J. (2019). Trends and issues in multimedia learning research in 1996–2016: A bibliometric analysis. Educational Research Review, 28, 100282. https://doi.org/10.1016/j.edurev.2019.100282
Lin, H. C. S., Yu, S. J., Sun, J. C. Y., & Jong, M. S. Y. (2021). Engaging university students in a library guide through wearable spherical video-based virtual reality: Effects on situational interest and cognitive load. Interactive Learning Environments, 29(8), 1272-1287. https://doi.org/10.1080/10494820.2019.1624579
Liu, W. (2021). Knowledge map: a creative visual path to library guides and resources. The Electronic Library, 38 (5/6), 943-962. https://doi.org/10.1108/EL-03-2020-0055
Magoi, J. S., Abrizah, A., & Aspura, M. Y. I. (2020). Shaping library’s social media authority through trust-creating activities: A case of selected academic libraries in Nigeria. Malaysian Journal of Library & Information Science, 25(1), 83-102. https://doi.org/10.22452/mjlis.vol25no1.5
Mansouri, S., Alhadidi, T., Chabchoub, S., & Salah, R. B. (2018). Impedance cardiography: recent applications and developments. Biomed Res, 29(19), 3542-52. https://doi.org/10.4066/biomedicalresearch.29-17-3479
Miller, S. D. (2018). Diving deep: Reflective questions for identifying tacit disciplinary information literacy knowledge practices, dispositions, and values through the ACRL Framework for information literacy. The Journal of Academic Librarianship, 44(3), 412-418. https://doi.org/10.1080/13614533.2019.1621186
Molenda, M. (2003). In search of the elusive ADDIE model. Performance improvement, 42(5), 34-37. https://doi.org/10.1002/pfi.4930420508
Molenda, M. (2015). In search of the elusive ADDIE model. Performance improvement, 54(2), 40-42. https://doi.org/:10.1002/pfi .4930420508
Müller, F. A., & Wulf, T. (2021). Blended learning environments that work: An evidence-based instructional design for the delivery of qualitative management modules. The International Journal of Management Education, 19(3), 100530. https://doi.org/10.1016/j.ijme.2021.100530
Mullins, K. (2014). Good IDEA: Instructional design model for integrating information literacy. The Journal of Academic Librarianship, 40(3-4), 339-349. https://doi.org/10.1016/j.acalib.2014.04.012
Mullins, K. (2016). IDEA model from theory to practice: integrating information literacy in academic courses. The Journal of Academic Librarianship, 42(1), 55-64. http://dx.doi.org/10.1016/j.acalib.2014.04.012
Mullins, K. (2017). Research Plus™ mobile app: information literacy “On the Go”. Reference Services Review, 45, 38-53. https://doi.org/10.1108/RSR-03-2016-0020
Mutlu-Bayraktar, D., Cosgun, V., & Altan, T. (2019). Cognitive load in multimedia learning environments: A systematic review. Computers & Education, 141, 103618. https://doi.org/10.1016/j.compedu.2019.103618
Narayan, V., Herrington, J., & Cochrane, T. (2019). Design principles for heutagogical learning: Implementing student-determined learning with mobile and social media tools. Australasian Journal of Educational Technology, 35(3), 1-11. https://orcid.org/0000-0002-6833-706X
Nesbit, J. C., K. Y. Belfer y J. Vargo. 2002. “A convergent participation model forevaluation of learning objects”. Canadian Journal of Learning and Technology 28 (3), 105-120. https://doi.org/10.21432/T25C8C
Nikou, S., & Aavakare, M. (2021). An assessment of the interplay between literacy and digital technology in higher education. Education and Information Technologies, 1-23, 1-12. https://doi.org/10.1007/s10639-021-10451-0
Nokelainen, P. (2006). An Empirical Assessment of Pedagogical Usability Criteria for Digital Learning Material with Elementary School Students. Educational Technology & Society, 9(2), 178–197. https://researchportal.helsinki.fi/en/publications/an-empirical-assesment-of-pedagogical-usability-criteria-for-digi
Ozer, O., & Kılıç, F. (2018). The effect of mobile-assisted language learning environment on EFL students’ academic achievement, cognitive load and acceptance of mobile learning tools. EURASIA Journal of Mathematics, Science and Technology Education, 14(7), 2915-2928. https://doi.org/10.29333/ejmste/90992
Park, Y., & Kim, Y. (2018). A design and Development of micro-Learning Content in e-Learning System. International Journal on Advanced Science, Engineering and Information Technology, 8(1), 56-61. http://dx.doi.org/10.18517/ijaseit.8.1.2698
Park, H., Kim, H. S., & Park, H. W. (2020). A scientometric study of digital literacy, ICT literacy, information literacy, and media literacy. Journal of Data and Information Science, 6(2), 116-138. http://dx.doi.org/ 10.2478/jdis-2021-0001
Park, H., Kim, H. S., & Park, H. W. (2021). A scientometric study of digital literacy, ICT literacy, information literacy, and media literacy. Journal of Data and Information Science, 6(2), 116-138. http://dx.doi.org/ 10.1007/s10639-021-10832-5
Parsazadeh, N., Ali, R., & Rezaei, M. (2018). A framework for cooperative and interactive mobile learning to improve online information evaluation skills. Computers & Education, 120, 75-89. http://dx.doi.org/ 10.1016/j.compedu.2018.01.010
Pelletier, K., Brown, M., Brooks, D. C., Mccormack, M., Reeves, J., Bozkurt, A., Crawfurd, S., Czerniewicz, L., Gibson, R., Linder, K., Mason, J., & Mondelli, V. (2021). 2021 EDUCAUSE Horizon Report. Teaching and Learning Edition. In Educause. https://www.educause.edu/horizon-report-teaching-and-learning-2021.
Pinto, M., Gómez-Camarero, C., Fernández-Ramos, A., & Vinciane-Doucet, A. (2017). Evaluareed: desarrollo de una herramienta para la evaluación de la calidad de los recursos educativos electrónicos. Investigación Bibliotecológica. Archivonomía, Bibliotecología e Información, 31(72), 227. https://doi.org/10.22201/iibi.0187358xp.2017.72.57831
Pinto, M., Fernández-Pascual, R., Caballero-Mariscal, D., Sales, D., Guerrero, D., & Uribe, A. (2019). Scientific production on mobile information literacy in higher education: a bibliometric analysis (2006–2017). Scientometrics, 120(1), 57-85. https://doi.org/10.1007/s11192-019-03115-x
Pinto, M., Sales, D., Fernández-Pascual, R., & Caballero-Mariscal, D. (2020). Attitudes, perceptions and prospectings on mobile information literacy training: Design and validation of the MOBILE-APP questionnaire. Journal of librarianship and information science, 52(1), 208-223. https://doi.org/10.1177/0961000618788726
Pinto, M., Caballero, D., Sales, D., & Fernández-Pascual, R. (2020). MOBILE-APPS questionnaire: Developing and validating a scale to measure the attitudes and perceptions of undergraduate students on mobile information literacy. Journal of librarianship and information science, 52(4), 1063-1072. https://doi.org/10.1177/0961000620902260
Pinto, M., Mariscal, D. C., & Segura, A. (2021). Experiences of information literacy and mobile technologies amongst undergraduates in times of COVID. A qualitative approach. Aslib Journal of Information Management,74 (2), 181-201. https://doi.org/10.1007/s11192-020-03523-4
Polizzi, G. (2020). Digital literacy and the national curriculum for England: Learning from how the experts engage with and evaluate online content. Computers & Education, 152, 103859. https://doi.org/10.1016/j.compedu.2020.103859
Ramsey, E., & Vecchione, A. (2014). Engaging library users through a social media strategy. Journal of Library Innovation, 5(2). https://www.researchgate.net/publication/308515443_Engaging_library_users_through_a_social_media_strategy
Rapchak, M. E. (2018). Collaborative learning in an information literacy course: The impact of online versus face-to-face instruction on social metacognitive awareness. The Journal of Academic Librarianship, 44(3), 383-390. https://doi.org/10.1016/j.acalib.2018.03.003
Reynolds, K.M., Roberts, L.M. and Hauck, J. (2017), Exploring motivation: integrating the ARCS model with instruction Reference Services Review, 45 (2), 149-165. https://doi.org/10.1108/RSR-10-2016-0057
Roberts, L. (2017). Research in the real world: Improving adult learners web search and evaluation skills through motivational design and problem-based learning. College & Research Libraries, 78(4), 527. https://doi.org/10.5860/crl.78.4.527
Rodgers, A. R., & Puterbaugh, M. (2017). Digital badges and library instructional programs: Academic library case study. Journal of Electronic Resources Librarianship, 29(4), 236-244. https://doi.org/10.1080/1941126X.2017.1378542
Rudolph, M. (2017). Cognitive theory of multimedia learning. Journal of Online Higher Education, 1(2), 1-17. https://doaj.org/article/55846c6b431d4a3ca1bd2020eeac11b1
Sales, D., Cuevas-Cerveró, A., & Gómez-Hernández, J. A. (2020). Perspectivas sobre la competencia informacional y digital de estudiantes y docentes de Ciencias Sociales antes y durante el confinamiento por la Covid-19. Profesional de la información, 29(4). https://doi.org/10.3145/epi.2020.jul.23
Saroia, A. I., & Gao, S. (2019). Investigating university students’ intention to use mobile learning management systems in Sweden. Innovations in Education and Teaching International, 56(5), 569-580. https://doi.org/10.1080/14703297.2018.1557068
Schroeder, N. L., & Cenkci, A. T. (2020). Do measures of cognitive load explain the spatial split-attention principle in multimedia learning environments? A systematic review. Journal of Educational Psychology, 112(2), 254-ss. https://doi.org/10.1037/edu0000372
Shail, M. S. (2019). Using micro-learning on mobile applications to increase knowledge retention and work performance: a review of literature. Cureus, 11(8), 1-18. https:/doi:10.7759/cureus.5307
Sheng Lin, H. C., Yu, S. J., Sun, J. C. Y., & Jong, M. S. Y. (2019). Engaging university students in a library guide through wearable spherical video-based virtual reality: Effects on situational interest and cognitive load. Interactive Learning Environments, 1-16, 1-14. https://doi.org/10.1080/10494820.2019.1624579
Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning, 2(1),1-15. http://www.itdl.org/Journal/Jan_05/article01.htm
Simmons, D. E. (2002). The forum report: E-learning adoption rates and barriers. In A. Rossett (Ed.), The ASTD e-learninghandbook (pp. 19– 23). New York: McGraw-Hill.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7
Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1-16. https://doi.org/10.1007/s11423-019-09701-3
Van Bergen, P., & Parsell, M. (2019). Comparing radical, social and psychological constructivism in Australian higher education: a psycho-philosophical perspective. The Australian Educational Researcher, 46(1), 41-58. . https://doi.org/10.1007/s13384-018-0285-8
Visvizi, A., Jussila, J., Lytras, M. D., & Ijäs, M. (2020). Tweeting and mining OECD-related microcontent in the post-truth era: A cloud-based app. Computers in Human Behavior, 107, 105958. https://doi.org/10.1016/j.chb.2019.03.022
Walsh, J. (2017). Connectivism: networked learning for a digital Era. Teacher Learning Network, 24(2), 9-13. http://dx.doi.org/10.3916/C37-2011-02-05
Wang, X. (2019). Research on College English Micro-learning Based on Mobile Terminal. The FronLtiers of Society, Science and Technology, 1(2), 1-11. https://doi.org/10.25236/FSST.20190211
Wang, X. (2019)b. Innovation of College English Teaching Model Based on Mobile Micro-learning Technology. Frontiers in Educational Research, 2(2), 1-17. https://doi.org/10.25236/FER.033026
Wang, Z., Gong, S. Y., Xu, S., & Hu, X. E. (2019). Elaborated feedback and learning: Examining cognitive and motivational influences. Computers & Education, 136, https://doi.org/130-140. 10.1016/j.compedu.2019.04.003
Yates, D., Frydenberg, M., Waguespack, L., McDermott, I., OConnell, J., Chen, F., & Babb, J. S. (2019). Dotting i’s and Crossing T’s: Integrating Breadth and Depth in an Undergraduate Cybersecurity Course. Information Systems Education Journal, 17(6), 41. https://isedj.org/2019-17/n6/ISEDJv17n6p41.html
Yoon, M., Lee, J., & Jo, I. H. (2021). Video learning analytics: Investigating behavioral patterns and learner clusters in video-based online learning. The Internet and Higher Education, 50, 100806. https://doi.org/10.1016/j.iheduc.2021.100806
Zagami, J., Bocconi, S., Starkey, L., Wilson, J. D., Gibson, D., Downie, J., ... & Elliott, S. (2018). Creating future ready information technology policy for national education systems. Technology, knowledge and learning, 23(3), 495-506. https://doi.org/10.1007/s10758-018-9387-7
Zhang, L., Li, X., Wang, J., Ma, X., & Xu, M. (2017). Construction of Mobile Teaching Model Based on Connectivism Learning Theory in Cloud Environment. Journal of Computers, 28(4), 215-226. https://doi.org/10.3966/199115592017082804023
Zhang, J., & West, R. E. (2020). Designing Microlearning Instruction for ProfessionalDevelopment Through a Competency Based Approach. TechTrends, 64(2), 310-318. https://doi.org/10.1007/s11528-019-00449-4
Zhong, H. X., Chiu, P. S., & Lai, C. F. (2021). Effects of the Use of CDIO Engineering Design in a Flipped Programming Course on Flow Experience. Cognitive Load. Sustainability, 13(3), 1381. https://doi.org/10.3390/su13031381
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 David Caballero-Mariscal, María Pinto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.