Dynamic relationships between Human Intelligence and Artificial Intelligence in academic research

Authors

DOI:

https://doi.org/10.5195/biblios.2024.1227

Keywords:

Academic research, Artificial intelligence, Levels of knowledge, Human intelligence, Technological developments, Technological limits

Abstract

Objective. Determine which research activities must continue to be assumed by human researchers because they represent a limitation to the current developments of Artificial Intelligence for the context of current higher education.

Method. To validate this hypothesis, a hermeneutic-critical research approach is adopted, which seeks to interpret advances in previous research from contextualized questions. To develop this research approach, qualitative methods are used, which, although they do not rule out the use of numbers, generate the validation of the hypothesis from non-numerical analysis. For this reason, the documentary review of new knowledge products classified as scientific by the medium in which they have been published is adopted as an information collection strategy.

Results. The knowledge of Human Intelligence was organized into four levels for the management of research data: first, declarative; second, procedural; third, schematic; and strategic fourth. Within the framework of this classification, the present and expected developments of Artificial Intelligence were interpreted, which have six types: reactive, short-term memory, autonomous, theory of mind, general and superintelligence. Currently, only the first three types of artificial intelligence have been developed, which correspond to the first two levels of human knowledge. Therefore, it is possible to determine that Artificial Intelligence has the possibility of assuming the research activities of the first two levels and human intelligence refers to the last two levels.

Conclusions. Academic research must accept the dynamic coexistence between Human Intelligence and Artificial Intelligence, considering that the former has the possibility of using the latter as support in the generation of new knowledge. While Artificial Intelligence can make review products, Human Intelligence has the possibility of making reflection and proposal products to ensure advances in knowledge. Consequently, the academic community must prioritize the publication of exclusive products of human activity, both in its editorial processes and in strategies to measure the quality of higher education institutions.

Author Biography

Juan Sebastián Alejandro Perilla-Granados, Universidad Tecnológica de Bolívar

Doctor in Law (PHD), Master in Education, Master in Private Law and lawyer from Universidad de los Andes (Colombia). Senior Researcher recognized by the Ministry of Science, Technology and Innovation of Colombia. He is a visiting professor at the School of Business, Law and Society of the Technological University of Bolivar.

References

Balcero, A., Gabalán, J. & Vasquez, F. (2022). Sistema de aseguramiento de la calidad de la educación superior: Falencias y propuesta de mejora. Praxis & Saber, 13(34), 39-57. https://doi.org/10.19053/22160159.v13.n34.2022.14084

Bolaño, M., & Duarte, N. (2024). Una revisión sistemática del uso de la inteligencia artificial en la educación. Revista Colombiana de Cirugía, 39(1), 51-63. https://doi.org/10.30944/20117582.2365

Castro, M. (2019). Ambientes de aprendizaje. Sophia, 15(2), 40-54. https://doi.org/10.18634/sophiaj.15v.2i.827

Davis, E. (2015). Ethical guidelines for a superintelligence. Artificial Intelligence, 220,121-124. https://doi.org/10.1016/j.artint.2014.12.003.

Díaz, J. (2021). Aprendizaje automático y aprendizaje profundo. Ingeniare. Revista Chilena de Ingeniería, 29(2), 180-181. https://dx.doi.org/10.4067/S0718-33052021000200180

Difabio, H., & Álvarez, G. (2022). Las conclusiones de la tesis doctoral en educación: Sus movimientos y pasos retóricos. Areté, Revista Digital del Doctorado en Educación, 8(16), 11-36. https://doi.org/10.55560/arete.2022.16.8.1

Duan, Y., Edwards, J., & Dwivedi, Y. (2019). Artificial intelligence for decision making in the era of big data: Evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Espinoza, E. (2018). El problema de investigación. Conrado, 14(64), 22-32. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442018000400022&lng=es&tlng=es

García, J., & Sánchez, P. (2020). Diseño teórico de la investigación: Instrucciones metodológicas para el desarrollo de propuestas y proyectos de investigación científica. Información Tecnológica, 31(6), 159-170. https://dx.doi.org/10.4067/S0718-07642020000600159

Goertzel, B. (2014). Artificial general intelligence: Concept, state of the art, and future prospects. Journal of Artificial General Intelligence, 8(1), 1-22. https://doi.org/10.2478/jagi-2014-0001

Gómez, J., & Calvache, J. (2018). El artículo de reflexión. Colombian Journal of Anestesiology, 46(1), 1-2. https://doi.org/10.1097/cj9.0000000000000037

Jarrahi, M., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87-99. https://doi.org/10.1016/j.bushor.2022.03.002

Kuusi, O., & Heinonen, S. (2022). Scenarios from artificial narrow intelligence to artificial general intelligence: Reviewing the results of the international work/technology 2050 study. World Futures Review, 14(1), 65-79. https://doi.org/10.1177/19467567221101

Leal, F. (2017). ¿Qué función cumple la argumentación en la metodología de la investigación en ciencias sociales? Espiral (Guadalajara), 24(70), 9-49. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-05652017000300009&lng=es&tlng=es

Llanos, A. (2022). Metodología de la investigación interdisciplinaria: Fundamentos y proyecciones. Quipukamayoc, 30(64), 63-76. https://dx.doi.org/10.15381/quipu.v30i64.24314

Magni, D., Del Gaudio, G., Papa, A., & Della Corte, V. (2024). Digital humanism and artificial intelligence: The role of emotions beyond the human–machine interaction in society 5.0. Journal of Management History, 30(2), 195-218. https://doi.org/10.1108/JMH-12-2022-0084

Mainzer, K. (2020). From natural and artificial intelligence to superintelligence? Technik im Fokus, 1, 183-241. https://doi.org/10.1007/978-3-662-59717-0_10

Martin, J. (2018). Calidad educativa en la educación superior colombiana: Una aproximación teórica. Sophia, 14(2), 4-14. https://doi.org/10.18634/sophiaj.14v.2i.799

Matthews, G., Hancock, P., Lin, J., Panganiban, A., Reinerman, L., Szalma, J., & Wohleber, R. (2021). Evolution and revolution: Personality research for the coming world of robots, artificial intelligence, and autonomous systems. Personality and Individual Differences, 169, 1-13. https://doi.org/10.1016/j.paid.2020.109969

Minati, G. (2020). Sistemas cognitivos complejos y su inconsciente: Conjeturas inspiradas relacionadas con la inteligencia artificial. Future Internet, 12(12), 1-24. https://doi.org/10.3390/fi12120213

Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., & Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4), 393-399. https://doi.org/10.1016/j.nic.2020.07.004

Ocaña, Y., Valenzuela, L., & Garro, L. (2019). Inteligencia artificial y sus implicaciones en la educación superior. Propósitos y Representaciones, 7(2), 536-568. https://dx.doi.org/10.20511/pyr2019.v7n2.274

Perilla, J. (2023). Los niveles del conocimiento para el diseño curricular de las facultades de derecho. Revista Pedagogía Universitaria y Didáctica del Derecho, 10(1), 71–90. https://doi.org/10.5354/0719-5885.2023.69799

Perilla, J. (2024a). Posibilidades para vincular la inteligencia artificial en la etapa previa de los contratos estatales en Colombia. Revista Eurolatinoamericana de Derecho Administrativo, 11(2), 1-30. https://doi.org/10.14409/redoeda.v11i2.13879

Perilla, J. (2024b). Posibilidades de gestión de conflictos mediante la inteligencia artificial en los sistemas de administración de justicia latinoamericanos. Revista Oficial del Poder Judicial, 16(22), 449-473. https://doi.org/10.35292/ropj.v16i22.1025

Perilla, J. (2024c). La inteligencia artificial en las facultades de derecho a través de generadores de respuestas automáticas. Revista Pedagogía Universitaria y Didáctica del Derecho, 11(2), 55-70. https://doi.org/10.5354/0719-5885.2024.72696

Perilla, J. (2024d). Lineamientos para implementar la inteligencia artificial. European Journal of Privacy Law & Technologies, 2024(1), 42-58. https://doi.org/10.57230/EJPLT241JSAPG

Perilla, J. (2024e). O processo por meio da inteligência artificial. Revista Brasileira de Direito Processual Penal, 10(2). https://doi.org/10.22197/rbdpp.v10i2.988

Piña, L. (2024). Nuevos enfoques investigativos ante la inteligencia artificial. Revista Arbitrada Interdisciplinaria – Koinonía, 9(17), 2-3. https://doi.org/10.35381/rkv9i17.3231

Ramírez, A. (2009). La teoría del conocimiento en investigación científica: Una visión actual. Anales de la Facultad de Medicina, 70(3), 217-224. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832009000300011&lng=es&tlng=es

Rodríguez, R. (2018). Los modelos de aprendizaje de Kolb, Honey y Mumford: Implicaciones para la educación en ciencias. Sophia, 14(1), 51-64. https://doi.org/10.18634/sophiaj.14v.1i.698

Saranya, A., & Subhashini, R. (2023). A systematic review of explainable artificial intelligence models and applications: Recent developments and future trends. Decision Analytics Journal, 7, 1-14. https://doi.org/10.1016/j.dajour.2023.100230

Signorelli, C. (2018). Can computers become conscious and overcome humans? Frontiers in Robotics and AI, 5, 121, 1-20. https://doi.org/10.3389/frobt.2018.00121

Totschnig, W. (2020). Fully autonomous AI. Science and Engineering Ethics, 26(5), 2473-2485. https://doi.org/10.1007/s11948-020-00243-z

Troncoso, M., Dueñas, Y., & Verdecia, E. (2023). Inteligencia artificial y educación: Nuevas relaciones en un mundo interconectado. Revista Estudios del Desarrollo Social: Cuba y América Latina, 11(2), 1-20. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2308-01322023000200014&lng=es&tlng=es

Villegas, M., González, F., & Núñez, R. (2008). Línea de investigación conocimiento e investigación (LICOIN). Paradígma, 29(2), 223-236. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1011-22512008000200012&lng=es&tlng=es

Zhang, B., Zhu, J., & Su, H. (2023). Toward the third generation artificial intelligence. Science China Information Sciences, 66(2), 1-23. https://doi.org/10.1007/s11432-021-3449-x

Zhang, J., Hilpert, B., Broekens, J., & Jokinen, J. (2024, May 11-16). Simulating emotions with an integrated computational model of appraisal and reinforcement learning [Conference session]. CHI '24: CHI Conference on Human Factors in Computing Systems, Honolulu, HI, United States. (703, pp. 1–12). https://doi.org/10.1145/3613904.3641908

Published

2025-02-21

How to Cite

Perilla-Granados, J. S. A. (2025). Dynamic relationships between Human Intelligence and Artificial Intelligence in academic research. Biblios Journal of Librarianship and Information Science, (87), e014. https://doi.org/10.5195/biblios.2024.1227